
    Ph-                         d dl Z d dlZd dlmZ ddlmZ ddlmZ ddl	m
Z ddl	mZ d d	l mZmZ d d
lmZmZmZ g dZ G d de      Z G d de      Zeeee   ef   Z G d de      Z G d de      Zy)    N)	Parameter   )Module)CrossMapLRN2d   )
functional)init)TensorSize)UnionListTuple)LocalResponseNormr   	LayerNorm	GroupNormc                        e Zd ZU dZg dZeed<   eed<   eed<   eed<   ddededededdf
 fd	Zd
e	de	fdZ
d Z xZS )r   a  Applies local response normalization over an input signal.

    The input signal is composed of several input planes, where channels occupy the second dimension.
    Applies normalization across channels.

    .. math::
        b_{c} = a_{c}\left(k + \frac{\alpha}{n}
        \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}

    Args:
        size: amount of neighbouring channels used for normalization
        alpha: multiplicative factor. Default: 0.0001
        beta: exponent. Default: 0.75
        k: additive factor. Default: 1

    Shape:
        - Input: :math:`(N, C, *)`
        - Output: :math:`(N, C, *)` (same shape as input)

    Examples::

        >>> lrn = nn.LocalResponseNorm(2)
        >>> signal_2d = torch.randn(32, 5, 24, 24)
        >>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7)
        >>> output_2d = lrn(signal_2d)
        >>> output_4d = lrn(signal_4d)

    )sizealphabetakr   r   r   r   returnNc                 Z    t         |           || _        || _        || _        || _        y Nsuper__init__r   r   r   r   selfr   r   r   r   	__class__s        iC:\Users\daisl\Desktop\realtime-object-detection\venv\Lib\site-packages\torch/nn/modules/normalization.pyr   zLocalResponseNorm.__init__2   *    	
	    inputc                     t        j                  || j                  | j                  | j                  | j
                        S r   )Flocal_response_normr   r   r   r   r   r#   s     r    forwardzLocalResponseNorm.forward9   s0    $$UDIItzz499%)VV- 	-r"   c                 :     dj                   di | j                  S Nz){size}, alpha={alpha}, beta={beta}, k={k} format__dict__r   s    r    
extra_reprzLocalResponseNorm.extra_repr=       A:AARDMMRRr"   )-C6?      ?g      ?)__name__
__module____qualname____doc____constants__int__annotations__floatr   r
   r(   r0   __classcell__r   s   @r    r   r      se    : 3M
IL
KHS  U e ]a -V - -Sr"   r   c                   |     e Zd ZU eed<   eed<   eed<   eed<   ddededededdf
 fdZdedefd	Zde	fd
Z
 xZS )r   r   r   r   r   r   Nc                 Z    t         |           || _        || _        || _        || _        y r   r   r   s        r    r   zCrossMapLRN2d.__init__G   r!   r"   r#   c                     t        j                  || j                  | j                  | j                  | j
                        S r   )_cross_map_lrn2dapplyr   r   r   r   r'   s     r    r(   zCrossMapLRN2d.forwardN   s0    %%eTYY

DII&*ff. 	.r"   c                 :     dj                   di | j                  S r*   r,   r/   s    r    r0   zCrossMapLRN2d.extra_reprR   r1   r"   )r2   r3   r   )r4   r5   r6   r9   r:   r;   r   r
   r(   strr0   r<   r=   s   @r    r   r   A   sa    
IL
KHS  U e \` .V . .SC Sr"   r   c                        e Zd ZU dZg dZeedf   ed<   eed<   e	ed<   	 	 dde
dede	de	d	df
 fd
ZddZded	efdZd	efdZ xZS )r   a  Applies Layer Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__

    .. math::
        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated over the last `D` dimensions, where `D`
    is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
    is ``(3, 5)`` (a 2-dimensional shape), the mean and standard-deviation are computed over
    the last 2 dimensions of the input (i.e. ``input.mean((-2, -1))``).
    :math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
    :attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    .. note::
        Unlike Batch Normalization and Instance Normalization, which applies
        scalar scale and bias for each entire channel/plane with the
        :attr:`affine` option, Layer Normalization applies per-element scale and
        bias with :attr:`elementwise_affine`.

    This layer uses statistics computed from input data in both training and
    evaluation modes.

    Args:
        normalized_shape (int or list or torch.Size): input shape from an expected input
            of size

            .. math::
                [* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
                    \times \ldots \times \text{normalized\_shape}[-1]]

            If a single integer is used, it is treated as a singleton list, and this module will
            normalize over the last dimension which is expected to be of that specific size.
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        elementwise_affine: a boolean value that when set to ``True``, this module
            has learnable per-element affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.
        bias: If set to ``False``, the layer will not learn an additive bias (only relevant if
            :attr:`elementwise_affine` is ``True``). Default: ``True``.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
            The values are initialized to 1.
        bias:   the learnable bias of the module of shape
                :math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
                The values are initialized to 0.

    Shape:
        - Input: :math:`(N, *)`
        - Output: :math:`(N, *)` (same shape as input)

    Examples::

        >>> # NLP Example
        >>> batch, sentence_length, embedding_dim = 20, 5, 10
        >>> embedding = torch.randn(batch, sentence_length, embedding_dim)
        >>> layer_norm = nn.LayerNorm(embedding_dim)
        >>> # Activate module
        >>> layer_norm(embedding)
        >>>
        >>> # Image Example
        >>> N, C, H, W = 20, 5, 10, 10
        >>> input = torch.randn(N, C, H, W)
        >>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
        >>> # as shown in the image below
        >>> layer_norm = nn.LayerNorm([C, H, W])
        >>> output = layer_norm(input)

    .. image:: ../_static/img/nn/layer_norm.jpg
        :scale: 50 %

    )normalized_shapeepselementwise_affine.rF   rG   rH   Nbiasr   c                    ||d}t         |           t        |t        j                        r|f}t        |      | _        || _        || _        | j                  rrt        t        j                  | j                  fi |      | _        |r/t        t        j                  | j                  fi |      | _        n7| j                  dd        n$| j                  dd        | j                  dd        | j                          y )NdevicedtyperI   weight)r   r   
isinstancenumbersIntegraltuplerF   rG   rH   r   torchemptyrN   rI   register_parameterreset_parameters)	r   rF   rG   rH   rI   rL   rM   factory_kwargsr   s	           r    r   zLayerNorm.__init__   s    $*U;&(8(89 02 %&6 7"4""#EKK0E0E$X$XYDK%ekk$2G2G&Z>&Z[	''5##Hd3##FD1r"   c                     | j                   rLt        j                  | j                         | j                   t        j
                  | j                         y y y r   )rH   r	   ones_rN   rI   zeros_r/   s    r    rV   zLayerNorm.reset_parameters   s?    ""JJt{{#yy$DII& % #r"   r#   c                     t        j                  || j                  | j                  | j                  | j
                        S r   )r%   
layer_normrF   rN   rI   rG   r'   s     r    r(   zLayerNorm.forward   s2    ||4(($++tyy$((L 	Lr"   c                 :     dj                   di | j                  S )NzF{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}r+   r,   r/   s    r    r0   zLayerNorm.extra_repr   s*    = 66<fN?C}}N 	Nr"   )h㈵>TTNNr   N)r4   r5   r6   r7   r8   r   r9   r:   r;   bool_shape_tr   rV   r
   r(   rD   r0   r<   r=   s   @r    r   r   Y   s    KZ FMCHo%	Jae7;     Z^   @D ,'LV L LNC Nr"   r   c                        e Zd ZU dZg dZeed<   eed<   eed<   eed<   	 	 ddededededdf
 fd	Z	dd
Z
dedefdZdefdZ xZS )r   a  Applies Group Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Group Normalization <https://arxiv.org/abs/1803.08494>`__

    .. math::
        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The input channels are separated into :attr:`num_groups` groups, each containing
    ``num_channels / num_groups`` channels. :attr:`num_channels` must be divisible by
    :attr:`num_groups`. The mean and standard-deviation are calculated
    separately over the each group. :math:`\gamma` and :math:`\beta` are learnable
    per-channel affine transform parameter vectors of size :attr:`num_channels` if
    :attr:`affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    This layer uses statistics computed from input data in both training and
    evaluation modes.

    Args:
        num_groups (int): number of groups to separate the channels into
        num_channels (int): number of channels expected in input
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        affine: a boolean value that when set to ``True``, this module
            has learnable per-channel affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.

    Shape:
        - Input: :math:`(N, C, *)` where :math:`C=\text{num\_channels}`
        - Output: :math:`(N, C, *)` (same shape as input)

    Examples::

        >>> input = torch.randn(20, 6, 10, 10)
        >>> # Separate 6 channels into 3 groups
        >>> m = nn.GroupNorm(3, 6)
        >>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
        >>> m = nn.GroupNorm(6, 6)
        >>> # Put all 6 channels into a single group (equivalent with LayerNorm)
        >>> m = nn.GroupNorm(1, 6)
        >>> # Activating the module
        >>> output = m(input)
    )
num_groupsnum_channelsrG   affinerc   rd   rG   re   Nr   c                    ||d}t         |           ||z  dk7  rt        d      || _        || _        || _        || _        | j                  rIt        t        j                  |fi |      | _
        t        t        j                  |fi |      | _        n$| j                  dd        | j                  dd        | j                          y )NrK   r   z,num_channels must be divisible by num_groupsrN   rI   )r   r   
ValueErrorrc   rd   rG   re   r   rS   rT   rN   rI   rU   rV   )	r   rc   rd   rG   re   rL   rM   rW   r   s	           r    r   zGroupNorm.__init__  s    $*U;*$)KLL$(;;#EKK$O$OPDK!%++l"Mn"MNDI##Hd3##FD1r"   c                     | j                   r?t        j                  | j                         t        j                  | j
                         y y r   )re   r	   rY   rN   rZ   rI   r/   s    r    rV   zGroupNorm.reset_parameters  s.    ;;JJt{{#KK		" r"   r#   c                     t        j                  || j                  | j                  | j                  | j
                        S r   )r%   
group_normrc   rN   rI   rG   r'   s     r    r(   zGroupNorm.forward  s0    ||4??DKKDHHF 	Fr"   c                 :     dj                   di | j                  S )Nz8{num_groups}, {num_channels}, eps={eps}, affine={affine}r+   r,   r/   s    r    r0   zGroupNorm.extra_repr"  s'    % $f6'+}}6 	6r"   )r^   TNNr_   )r4   r5   r6   r7   r8   r9   r:   r;   r`   r   rV   r
   r(   rD   r0   r<   r=   s   @r    r   r      s}    +Z DMO	JL]a$( 3  c    VZ  -1 (#
FV F F6C 6r"   r   )rS   rP   torch.nn.parameterr   moduler   
_functionsr   rA    r   r%   r	   r
   r   typingr   r   r   __all__r   r9   ra   r   r   r+   r"   r    <module>rr      s{      (  9    % %
J0S 0SfSF S* d3i%&uN uNpS6 S6r"   